9 research outputs found

    Control of an Underactuated Double-Pendulum Overhead Crane using Improved Model Reference Command Shaping: Design, Simulation and Experiment

    Get PDF
    This paper presents a new control scheme based on model reference command shaping (MRCS) for an overhead crane, with double-pendulum mechanism effects. The approach has an advantage in achieving an accurate trolley positioning, with low hook and payload oscillations, under various desired trolley positions and parameter uncertainties, without the requirement for measurement or estimation of system parameters. These are challenging in practice. The previously developed MRCS algorithm is improved in order to reduce its design complexity, as well as to ensure that it can be augmented with a feedback controller so that a concurrent controller tuning can be realised. The combined MRCS and feedback controller is used to achieve both, precise trolley positioning, and low hook and payload oscillations. To evaluate the effectiveness and the robustness of the approach, simulations and experiments using a nonlinear model and a laboratory double-pendulum crane are carried out. Under various desired positions and parameter uncertainties that involve varying the cable lengths (payload hoisting) and the payload mass variations, the superiority of the proposed approach is confirmed by achieving higher hook and payload oscillation reductions when compared with a recently proposed feedback controller. In addition, the desired trolley positions are achieved with smoother responses

    Efficient control of a nonlinear double-pendulum overhead crane with sensorless payload motion using an improved PSO-tuned PID controller

    Get PDF
    This paper proposes an efficient PID control of a highly nonlinear double-pendulum overhead crane without the need for a payload motion feedback signal. Optimal parameters of the PID controllers are tuned by using an improved particle swarm optimisation (PSO) algorithm based on vertical distance oscillations and potential energy of the crane. In contrast to a commonly used PSO algorithm based on a horizontal distance, the approach resulted in an efficient performance with a less complex controller. To test the effectiveness of the approach, extensive simulations are carried out under various crane operating conditions involving different payload masses and cable lengths. Simulation results show that the proposed controller is superior with a better trolley position response, and lower hook and payload oscillations as compared to the previously developed PSO-tuned PID controller. In addition, the controller provides a satisfactory performance without the need for a payload motion feedback signal

    Review of mathematical programming applications in water resource management under uncertainty

    Get PDF
    corecore